Closing Wed: \quad HW_8A,8B,8C(8.1,9.1) Closing Next Wed: HW_9A, 9B $(9.3,9.4)$

9.1 Intro to Differential Equations

A differential equation is an equation involving derivatives. A solution to a differential equation is any function that satisfies the equation.

Entry Task: Find $y=y(x)$ such that

$$
\frac{d y}{d x}-8 x=x^{2} \text { and } y(0)=5
$$

Check your final answer

Example

(c) Is $P(t)=0$ a solution?

Consider the differential equation:

$$
\frac{d P}{d t}=2 P
$$

(a) Is $P(t)=8 e^{2 t}$ a solution?

Question: What can you say about the behavior of the solutions without solving?
(b) Is $P(t)=t^{3}$ a solution?

The general solution to

$$
\frac{d P}{d t}=2 P
$$

is

$$
P(t)=C e^{2 t}
$$

Initial conditions note:

If you are asked to find the solutions to

$$
\frac{d P}{d t}=2 P \quad \text { with } P(0)=12
$$

then
for any constant C .
We will learn how to find this next time.
Step 1: Find the general solution

$$
P(t)=C e^{2 t}
$$

Step 2: Plug in initial condition

$$
\begin{gathered}
P(0)=C e^{2(0)}=12 \\
\\
C(1)=12 \\
\\
C=12
\end{gathered}
$$

Thus,

$$
P(t)=12 e^{2 t}
$$

Check!!!

Example: Consider the $2^{\text {nd }}$ order differential equation

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

(c) There is a sol'n that looks like $y=e^{r t}$. Can you find the value of r that works?
(a) Is $y=e^{-2 t}$ a solution?
(b) Is $y=t e^{-t}$ a solution?

Application Tools:

$\frac{d y}{d t}=$ "instantaneous rate of change of y with respect to $t^{\prime \prime}$

" A is proportional to B " means
$A=k B$, where k is a constant. In other words, $A / B=k$.

1. Natural Unrestricted population

Assumption: "The rate of growth of a population is proportional to the size of the population."
$\mathrm{P}(\mathrm{t})=$ the population at year t,
$\frac{d P}{d t}=$ the rate of change of the population with respect to time (i.e. rate of growth).

The assumption is equivalent to

$$
\frac{d P}{d t}=k P
$$

for some constant k.

2. Newton's Law of Cooling

Assumption: "The rate of cooling is proportional to the temperature difference between the object and its surroundings."
$T_{S}=$ constant temp. of surroundings $T(t)=$ temp. of the object at time t, $\frac{d T}{d t}=$ rate of change of temp. with respect to time.
$T-T_{s}=$ temp. difference between object and surroundings.

Newton's Law of Cooling states

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

for some constant k.

3. A Mixing Problem

Assume a 50 gallon vat is initially full of pure water.
A salt water mixture (brine) is being dumped into the vat at $2 \mathrm{gal} / \mathrm{min}$ and this mixture contains 3 grams of salt per gal. The vat is thoroughly mixed. At the same time, the mixture is coming out of the vat at $2 \mathrm{gal} / \mathrm{min}$.

Let $\mathrm{y}(\mathrm{t})=$ grams of salt in vat at time t. $\frac{d y}{d t}=$ the rate $(\mathrm{g} / \mathrm{min})$ at which salt is changing with respect to time.

Note:

$\frac{y(t)}{50}=$ salt per gallon at time, t.

RATE IN $=\left(3 \frac{\mathrm{~g}}{\mathrm{gal}}\right)\left(2 \frac{\mathrm{gal}}{\min }\right)=6 \frac{\mathrm{~g}}{\min }$
RATE OUT $=\left(\frac{y}{50} \frac{\mathrm{~g}}{\mathrm{gal}}\right)\left(2 \frac{\mathrm{gal}}{\min }\right)=\frac{y}{25} \frac{\mathrm{~g}}{\mathrm{~min}}$
Thus,

$$
\frac{d y}{d t}=6-\frac{y}{25} \quad \text { with } y(0)=0
$$

4. All motion problems!

Consider an object of mass $m \mathrm{~kg}$ moving up and down.
Let $\mathrm{y}(\mathrm{t})=$ 'height at time t^{\prime}

$$
\begin{aligned}
& \frac{d y}{d t}=\text { 'velocity at time } t^{\prime} \\
& \frac{d^{2} y}{d t^{2}}=\text { 'acceleration at time } t^{\prime}
\end{aligned}
$$

Assumption 2:

Consider gravity and air resistance. Assume the force due to air resistance is proportional to velocity and in the opposite direction of velocity. Then

$$
m \frac{d^{2} y}{d t^{2}}=-m g-k \frac{d y}{d t}
$$

Newton's $2^{\text {nd }}$ Law says:

$$
(\text { mass })(\text { acceleration })=\text { Force }
$$

$m \frac{d^{2} y}{d t^{2}}=$ sum of forces on object

Assumption 1:
Only force is force due to gravity (no air resistance):

$$
m \frac{d^{2} y}{d t^{2}}=-m g
$$

5. Many, many others:

Random Example:

A common assumption for melting snow/ice is "the rate at which the object is melting (rate of change of volume) is proportional to the exposed surface area."

Consider a melting snowball:

$$
V=\frac{4}{3} \pi r^{3}, \quad S=4 \pi r^{2}
$$

Write down the differential equation for r.

